Всего: 44 1–20 | 21–40 | 41–44
Добавить в вариант
Велосипедист движется по прямой улице. На графике представлена зависимость его перемещения от времени.
Выберите два утверждения, которые верно описывают его движение. Запишите в ответ их номера.
1) Первые 100 метров пути велосипедист проехал за 10 секунд.
2) Велосипедист за 80 секунд проехал путь 400 м.
3) Велосипедист не двигался в течение 20 секунд.
4) Первые 50 секунд велосипедист двигался со средней скоростью 10 м/с.
5) На всём пути велосипедист двигался равноускоренно.
Турист движется по лесу. На графике представлена зависимость его перемещения от времени.
Выберите два утверждения, которые верно описывают движение туриста. Запишите в ответ их номера.
1) Первые 10 минут турист отдыхал, следующие 40 минут турист шёл не останавливаясь.
2) Скорость туриста на третьем участке пути меньше, чем на первом участке.
3) Весь путь турист прошёл с постоянной скоростью.
4) Время движения туриста составило 45 минут.
5) За первые полчаса турист прошёл 1 км пути.
Мотоциклист движется по прямой улице. На графике представлена зависимость его перемещения от времени.
Выберите два утверждения, которые верно описывают движение мотоциклиста. Запишите в ответ их номера.
1) В течение всего времени движения мотоциклист разгонялся.
2) На участке от 16 до 24 секунд мотоциклист двигался равномерно.
3) За первые 8 секунд мотоциклист проехал 200 м.
4) Первые 4 секунды мотоциклист двигался со скоростью 10 м/с.
5) На участке от 8 до 16 секунд мотоциклист двигался со скоростью 12,5 м/с.
На графике представлена зависимость проекции скорости тела от времени.
Выберите два утверждения, которые верно описывают движение этого тела. Запишите в ответ их номера.
1) В течение 1,5 минут от начала движения тело двигалось равноускоренно.
2) Последнюю минуту тело тормозило.
3) Через 1 минуту от начала движения тело остановилось.
4) За время, когда тело двигалось равноускоренно, оно прошло 1,2 км.
5) Тело разгонялось 40 секунд.
Велосипедист едет по прямому шоссе. На графике представлена зависимость проекции его скорости от времени.
Выберите два утверждения, которые верно описывают движение велосипедиста. Запишите в ответ их номера.
1) Первые 10 секунд велосипедист движется равноускоренно, следующие 50 секунд — равномерно.
2) Максимальный модуль ускорения на всём пути движения велосипедиста равен 2,5 м/с2.
3) Через 40 секунд от начала движения велосипедист остановился и поехал в другую сторону.
4) В течение 30 секунд велосипедист двигался с постоянной скоростью 50 м/с.
5) Модуль ускорения в первые 10 секунд движения в два раза больше модуля ускорения в последние 20 секунд движения.
Велосипедист движется по прямому участку пути. На графике представлена зависимость его координаты от времени.
Выберите два утверждения, которые верно описывают движение велосипедиста, и запишите номера, под которыми они указаны.
1) Первые 10 с велосипедист двигался со скоростью 4 м/с.
2) Последние 20 с велосипедист движется равномерно.
3) Все движение велосипедиста можно назвать равноускоренным движением.
4) Через 10 с после начала движения велосипедист остановился.
5) Велосипедист всегда движется в одном направлении.
Троллейбус движется по улице. На графике представлена зависимость его скорости от времени.
Выберите два утверждения, которые верно описывают движение автомобиля. Запишите в ответ их номера.
1) В течение первых 5 секунд троллейбус двигался с постоянной по модулю скоростью.
2) Во время торможения троллейбус двигался с ускорением, равным по модулю 4 м/с2.
3) Троллейбус стоял в течение 15 секунд на всём участке движения.
4) Первые 15 секунд троллейбус тормозил.
5) Всё время пути троллейбус двигался в одном направлении.
Из населённого пункта выходит прямолинейная дорога, вдоль которой проложена линия электропередачи. Группа ремонтников выехала на место повреждения ЛЭП в 15 км от населённого пункта. До места поломки они ехали с постоянной скоростью 60 км/ч, ремонт занял 45 мин, обратно они возвращались с постоянной скоростью 45 км/ч. Изобразите график зависимости их координаты от времени, приняв за начало координат населённый пункт, а за начало отсчёта времени момент выезда группы.
Автомобиль движется по прямой улице. На графике представлена зависимость его скорости от времени.
Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны:
1) Первые 10 с автомобиль движется равномерно, а следующие 10 с стоит на месте.
2) Первые 10 с автомобиль движется равноускоренно, а следующие 10 с – равномерно.
3) Максимальная скорость автомобиля за весь период наблюдения составляет 72 км/ч.
4) Через 30 с автомобиль остановился, а затем поехал в другую сторону.
5) Максимальный модуль ускорения автомобиля за весь период наблюдения равен 3 м/с2.
Автомобиль движется по прямому участку пути. На графике представлена зависимость его скорости от времени.
Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны:
1) Автомобиль не останавливался.
2) Первые 10 с автомобиль ехал равноускоренно, замедляясь.
3) Максимальный модуль ускорения автомобиля 4 м/с2.
4) Через 30 с автомобиль остановился, а затем поехал в другую сторону.
5) Максимальная скорость автомобиля за весь период наблюдения составляет 72 км/ч.
Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны:
1) Автомобиль не останавливался.
2) Первые 10 с автомобиль ехал равноускоренно, с уменьшением скорости.
3) Максимальный модуль ускорения автомобиля 2 м/с2.
4) Максимальная скорость автомобиля за весь период наблюдения составляет 12 км/ч.
5) Через 40 с автомобиль поехал равноускоренно, с уменьшением скорости.
Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.
ПРИМЕРЫ | ФИЗИЧЕСКИЕ ЯВЛЕНИЯ | |
А) через окно из дома можно смотреть на улицу Б) движение тел с колесами | 1) наличие силы трения качания на движущиеся предметы 2) переход механической энергии в тепловую 3) преломление света в воде 4) свет проходит через прозрачные предметы |
Запишите в таблицу выбранные цифры под соответствующими буквами.
A | Б |
Тело движется прямолинейно вдоль оси x. На графике представлена зависимость его координаты от времени.
Выберите два утверждения, которые верно описывают движение тела, и запишите номера, под которыми они указаны.
1) За первую секунду тело сдвинулось на 10 м.
2) Тело на всех промежутках времени движется равноускоренно.
3) Спустя 1 с тело начало двигаться в противоположную сторону.
4) Через 3 с тело остановилось.
5) За все время тело преодолело 20 м пути.
Автомобиль движется по прямой улице. На графике представлена зависимость проекции его скорости от времени.
Выберите два утверждения, которые верно описывают движение автомобиля. Запишите в ответ их номера.
1) Двигаясь равномерно, автомобиль прошёл 100 м.
2) В течение первых 5 секунд автомобиль разгонялся.
3) В интервале от 5 до 15 секунд автомобиль разгонялся.
4) В течение последних 5 секунд автомобиль двигался с постоянной скоростью, равной 20 м/с.
5) На всём участке пути автомобиль двигался равномерно.
Из населённого пункта выходит прямолинейная дорога, вдоль которой проложена линия электропередачи. Группа ремонтников выехала на место повреждения ЛЭП в 30 км от населённого пункта. До места поломки они ехали с постоянной скоростью 60 км/ч, ремонт занял 40 мин, обратно они возвращались с постоянной скоростью 45 км/ч. Изобразите график зависимости их координаты от времени, приняв за начало координат населённый пункт, а за начало отсчёта времени момент выезда группы.
Между двумя населёнными пунктами, находящимися на разных берегах реки в 15 км друг от друга, курсирует грузопассажирское судно. Из пункта А в пункт Б вниз по течению судно идёт со скоростью 22,5 км/ч, а обратно — со скоростью 18 км/ч. В каждом пункте судно стоит полчаса. Изобразите график зависимости координаты судна от времени с моменты выхода их пункта А и до момента возвращения в него, приняв за начало координат этот населённый пункт, а за начало отсчёта времени момент выхода судна. Участок реки между населёнными пунктами считать прямолинейным, а шириной реки пренебречь.
Автомобиль движется по прямой улице. На графике представлена зависимость его скорости от времени.
Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны.
1) Первые 10 с автомобиль движется равноускоренно, а затем движется в другую сторону.
2) Первые 20 с автомобиль движется в одном направлении.
3) За весь период наблюдения автомобиль тормозил 10 с.
4) В период 30-40 с модуль ускорения составляет 15 м/с2.
5) Максимальная скорость автомобиля была достигнута за 20 с.
Установите соответствие между примерами и физическими явлениями, которые эти примеры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.
ПРИМЕРЫ | ФИЗИЧЕСКИЕ ЯВЛЕНИЯ | |
А) Полёт артиллерийского снаряда Б) Падение метеорита на поверхность Луны | 1) Движение по баллистической траектории в поле силы тяжести 2) Движение тела под действием силы тяготения 3) Движение тела по инерции 4) Равномерное прямолинейное движение тела. |
Запишите в таблицу выбранные цифры под соответствующими буквами.
A | Б |
Между двумя населёнными пунктами, находящимися на разных берегах реки в 30 км друг от друга, курсирует грузопассажирское судно. Из пункта А в пункт Б вверх по течению судно идёт со скоростью 18 км/ч, а обратно — со скоростью 22,5 км/ч. В каждом пункте судно стоит полчаса. Изобразите график зависимости координаты судна от времени с моменты выхода их пункта А и до момента возвращения в него, приняв за начало координат этот населённый пункт, а за начало отсчёта времени момент выхода судна. Участок реки между населёнными пунктами считать прямолинейным, а шириной реки пренебречь.
Мальчик съезжает на санках с ледяной горки высотой 5 м с углом наклона 19,5° и затем движется по горизонтальному ледяному участку. Изобразите на графике зависимость скорости мальчика от времени в течение пяти секунд, пренебрегая трением и считая его начальную скорость равной нулю. (Ускорение свободного падения примите равным 10 м/с2.)