№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора ФИПИ
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 89600

1.

Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:

 

конвекция, генри, паскаль, испарение, ионизация, ом.

 

Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.



Название группы понятийПеречень понятий
  
  

2.

Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны:

 

1) Автомобиль останавливался два раза за весь свой путь.

2) Автомобиль на 30 секунде своего пути остановился и поехал в обратном направлении.

3) Минимальный модуль ускорения автомобиля 0,5 м/с2.

4) Автомобиль с 20 секунд до 30 секунд двигался равноускоренно.

5) Максимальная скорость автомобиля была 72 км/ч.

3.

Неподвижный груз, расположенный на столе с бортиком, закреплен к столу с помощью пружины и тянется с помощью нити как показано на рисунке. Нарисуйте все силы, действующие на брус. Трением пренебречь.

4.

Прочитайте текст и вставьте пропущенные слова. Слова в ответе могут повторяться.

 

1) уменьшается

2) увеличивается

3) не изменяется

 

Груз, прикреплённый к пружине, совершает свободные колебания по гладкому столу между точками 1 и 3. При перемещении между точками 2 и 3 кинетическая энергия груза __________, жёсткость пружины __________, полная механическая энергия системы груз — пружина __________.

5.

Шесть металлических брусков (А, B, C, D, E, F) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент составляют 100 °С, 80 °С, 60 °С, 40 °С, 20 °С, 10 °С. Какой из брусков имеет температуру 40 °С?

6.

Определите состав ядра атома кремния-28 (). В ответе укажите количество протонов и нейтронов без знаков препинания.

7.

Имеются два одинаковых проводящих шарика. Одному из них сообщили электрический заряд +8q, другому −4q. Затем шарики привели в соприкосновение и развели на прежнее расстояние. После соприкосновения заряды у шариков стали:

 

1) −4q и +4q соответственно

2) одинаковыми и равными +2q

3) одинаковыми и равными 0

4) +8q и −8q соответственно

8.

К покоящемуся телу массой 1 кг, лежащему на шероховатой горизонтальной поверхности, прикладывают горизонтальную силу F. Коэффициент трения тела поверхность равен 0,4. Изобразите график зависимости ускорения тела от приложенной силы. (Ускорение свободного падения примите равным 10 м/с2.)

9.

Средняя мощность стиральной машины составляет 2 кВт. Определите среднее сопротивление, которое оказывает стиральная машина электрическому току, при подключении её в городскую электрическую сеть с напряжением 220 В.

Запишите формулы и сделайте расчёты.

10.

С помощью вольтметра проводились измерения напряжения на участке электрической цепи переменного тока (см. рисунок). Погрешность измерений напряжения равна цене деления шкалы вольтметра.

Запишите в ответ показания вольтметра с учётом погрешности измерений. В ответе укажите значение напряжения и погрешность измерения слитно без пробела.

11.

Ученик исследовал зависимость изменения длины пружины от массы груза, подвешенного к этой пружине. Груз неподвижен. Погрешность измерения длины пружины равна 0,2 см, а массы тела – 1 г. Результаты измерений представлены в таблице.

 

№ опытаМасса тела, гУдлинение пружины, см
1101 ± 12,6 ± 0,2
2200 ± 15,0 ± 0,2
3299 ± 17,4 ± 0,2

 

Согласно этим измерениям, приблизительно жёсткость пружины равна

1) 40 Н/м

2) 50 Н/м

3) 60 Н/м

4) 70 Н/м

 

Условие уточнено редакцией РЕШУ ВПР.

12.

Вам необходимо исследовать, зависит ли модуль силы Ампера, действующей на проводник с током в магнитном поле, от силы тока, протекающего по проводнику. Имеется следующее оборудование (см. рисунок):

− источник постоянного тока, ключ, реостат;

− проводник длиной 10 см (на рис. проводник АВ);

− три одинаковых постоянных подковообразных магнита;

− штатив, соединительные провода.

 

В ответе:

1. Опишите экспериментальную установку.

2. Опишите порядок действий при проведении исследования.

13.

Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе принципа их действия. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца.

 

ТЕХНИЧЕСКИЕ УСТРОЙСТВА   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) линза

Б) зеркало

 

1) интерференция света

2) преломление света

3) дифракция света

4) отражение света

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  

14.

Каким физическим явлением обусловлена работа гидроэлектростанции?


Прочитайте текст и выполните задания 14 и 15.

 

Гидроэлектростанция

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

 

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

15.

Выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.

 

1) Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор.

2) КПД гидроэлектростанции меньше КПД теплоэлектростанций.

3) Большое значение для эффективности работы станции имеет выбор места.

4) Минимальный срок службы электростанций – около десяти лет.


Прочитайте текст и выполните задания 14 и 15.

 

Гидроэлектростанция

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

 

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

16.

При каком внешнем давлении наблюдается минимальная температура плавления льда?


Свойства льда

Между давлением и точкой замерзания (плавления) воды наблюдается интересная зависимость (см. таблицу).

Давление, атмТемпература плавления льда, °CИзменение объёма при
кристализации, см3/моль
Давление, атмТемпература плавления льда, °CИзменение объёма при
кристализации, см3/моль
10,0−1,625280−10,01,73
610−5,0−1,835810−5,01,69
1970−20,0−2,37764010,01,52
2115−22,00,842000073,80,68

 

С повышением давления до 2200 атмосфер температура плавления падает: с увеличением давления на каждую атмосферу она понижается примерно на 0,0075 °С. При дальнейшем увеличении давления точка замерзания воды начинает расти: при давлении 20 670 атмосфер вода замерзает при 76 °С. В этом случае будет наблюдаться горячий лёд.

При нормальном атмосферном давлении объём воды при замерзании внезапно возрастает примерно на 11%. В замкнутом пространстве такой процесс приводит к возникновению громадного избыточного давления до 2500 атм. Вода, замерзая, разрывает горные породы, дробит многотонные глыбы.

В XIX веке было обнаружено явление режеляции льда, которое можно продемонстрировать на опыте. Поставим на два столбика прямоугольный ледяной брусок. Перекинем через него тонкую стальную проволоку (диаметром 0,1 мм) и подвесим на ней груз массой 3 кг (см. рис. а). Все это оставим на лёгком морозе. Важно, чтобы температура на улице была лишь немногим ниже нуля. Примерно через сутки мы обнаружим, что проволока и гиря лежат на земле, а на столбиках стоит наш ледяной брусок, целый и невредимый. Если бы мы в течение опыта выходили на улицу, то увидели бы, как постепенно проволока опускается, как бы разрезая ледяной брусок (см. рис. б, в, г), никакого разреза не остаётся – выше проволоки брусок оказывается монолитным.

Долгое время думали, что лёд под лезвиями коньков тает потому, что испытывает сильное давление, температура плавления льда понижается и лёд плавится. Однако расчёты показывают, что под коньками температура плавления льда уменьшается примерно на 0,1 °С, что явно недостаточно для катания, например, при –10 °С.

17.

Что нужно изменить в опыте по «разрезанию» льда, чтобы провести его при более низкой температуре?


Свойства льда

Между давлением и точкой замерзания (плавления) воды наблюдается интересная зависимость (см. таблицу).

Давление, атмТемпература плавления льда, °CИзменение объёма при
кристализации, см3/моль
Давление, атмТемпература плавления льда, °CИзменение объёма при
кристализации, см3/моль
10,0−1,625280−10,01,73
610−5,0−1,835810−5,01,69
1970−20,0−2,37764010,01,52
2115−22,00,842000073,80,68

 

С повышением давления до 2200 атмосфер температура плавления падает: с увеличением давления на каждую атмосферу она понижается примерно на 0,0075 °С. При дальнейшем увеличении давления точка замерзания воды начинает расти: при давлении 20 670 атмосфер вода замерзает при 76 °С. В этом случае будет наблюдаться горячий лёд.

При нормальном атмосферном давлении объём воды при замерзании внезапно возрастает примерно на 11%. В замкнутом пространстве такой процесс приводит к возникновению громадного избыточного давления до 2500 атм. Вода, замерзая, разрывает горные породы, дробит многотонные глыбы.

В XIX веке было обнаружено явление режеляции льда, которое можно продемонстрировать на опыте. Поставим на два столбика прямоугольный ледяной брусок. Перекинем через него тонкую стальную проволоку (диаметром 0,1 мм) и подвесим на ней груз массой 3 кг (см. рис. а). Все это оставим на лёгком морозе. Важно, чтобы температура на улице была лишь немногим ниже нуля. Примерно через сутки мы обнаружим, что проволока и гиря лежат на земле, а на столбиках стоит наш ледяной брусок, целый и невредимый. Если бы мы в течение опыта выходили на улицу, то увидели бы, как постепенно проволока опускается, как бы разрезая ледяной брусок (см. рис. б, в, г), никакого разреза не остаётся – выше проволоки брусок оказывается монолитным.

Долгое время думали, что лёд под лезвиями коньков тает потому, что испытывает сильное давление, температура плавления льда понижается и лёд плавится. Однако расчёты показывают, что под коньками температура плавления льда уменьшается примерно на 0,1 °С, что явно недостаточно для катания, например, при –10 °С.

18.

Получится ли описанный в тексте опыт по режеляции льда, если его проводить при температуре –20 °С? Ответ поясните.


Свойства льда

Между давлением и точкой замерзания (плавления) воды наблюдается интересная зависимость (см. таблицу).

Давление, атмТемпература плавления льда, °CИзменение объёма при
кристализации, см3/моль
Давление, атмТемпература плавления льда, °CИзменение объёма при
кристализации, см3/моль
10,0−1,625280−10,01,73
610−5,0−1,835810−5,01,69
1970−20,0−2,37764010,01,52
2115−22,00,842000073,80,68

 

С повышением давления до 2200 атмосфер температура плавления падает: с увеличением давления на каждую атмосферу она понижается примерно на 0,0075 °С. При дальнейшем увеличении давления точка замерзания воды начинает расти: при давлении 20 670 атмосфер вода замерзает при 76 °С. В этом случае будет наблюдаться горячий лёд.

При нормальном атмосферном давлении объём воды при замерзании внезапно возрастает примерно на 11%. В замкнутом пространстве такой процесс приводит к возникновению громадного избыточного давления до 2500 атм. Вода, замерзая, разрывает горные породы, дробит многотонные глыбы.

В XIX веке было обнаружено явление режеляции льда, которое можно продемонстрировать на опыте. Поставим на два столбика прямоугольный ледяной брусок. Перекинем через него тонкую стальную проволоку (диаметром 0,1 мм) и подвесим на ней груз массой 3 кг (см. рис. а). Все это оставим на лёгком морозе. Важно, чтобы температура на улице была лишь немногим ниже нуля. Примерно через сутки мы обнаружим, что проволока и гиря лежат на земле, а на столбиках стоит наш ледяной брусок, целый и невредимый. Если бы мы в течение опыта выходили на улицу, то увидели бы, как постепенно проволока опускается, как бы разрезая ледяной брусок (см. рис. б, в, г), никакого разреза не остаётся – выше проволоки брусок оказывается монолитным.

Долгое время думали, что лёд под лезвиями коньков тает потому, что испытывает сильное давление, температура плавления льда понижается и лёд плавится. Однако расчёты показывают, что под коньками температура плавления льда уменьшается примерно на 0,1 °С, что явно недостаточно для катания, например, при –10 °С.