№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора ФИПИ
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 89607

1.

Прочитайте перечень понятий, с которыми вы сталкивались в курсе физики:

 

Ньютон, Планк, Солнце, Эйнштейн, метеорит, спутник.

 

Разделите эти понятия на две группы по выбранному вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.



Название группы понятийПеречень понятий
  
  

2.

Пешеход движется по прямой дороге. На графике представлена зависимость его перемещения от времени.

 

Выберите два утверждения, которые верно описывают движение пешехода. Запишите в ответ их номера.

 

1) В течение времени от 6 до 10 секунд пешеход не двигался.

2) Первые 6 секунд пешеход шёл с постоянной скоростью.

3) За 14 секунд пешеход прошёл 35 метров.

4) Весь путь пешеход прошёл с постоянной скоростью.

5) На участках пути от 0 до 4 секунд и от 10 до 14 секунд пешеход шёл с одинаковой скоростью.

3.

Для проведения опыта собрали электрическую цепь, изображенную на рисунке. При замкнутом ключе лампочка горела неполным накалом. При размыкании цепи лампочка ярко вспыхивает.

Какое явление вызывает эту вспышку?

4.

Прочитайте текст и вставьте пропущенные слова. Слова в ответе могут повторяться.

 

1) уменьшается

2) увеличивается

3) не изменяется

 

Снаряд, выпущенный под углом к горизонту, поднялся на максимальную высоту Н. При этом его потенциальная энергия __________, кинетическая энергия снаряда __________. При условии пренебрежения сопротивлением воздуха полная механическая энергия снаряда __________.

5.

Пуля, летящая в горизонтальном направлении, прошла сквозь вертикально расположенную фанерную мишень и продолжила движение в горизонтальном направлении. Как при этом изменилась кинетическая, потенциальная и внутренняя энергия пули?

Для каждой величины определите соответствующий характер её изменения:

 

1) увеличится;

2) уменьшится;

3) не изменится.

 

Кинетическая энергияПотенциальная энергияВнутренняя энергия
   

6.

Выберите три утверждения из списка, соответствующие ядерной модели строения атома:

 

1) вокруг ядра по орбитам обращаются протоны

2) почти вся масса атома сосредоточена в ядре атома

3) вокруг ядра по орбитам обращаются электроны

4) ядро атома электронейтрально

5) в состав ядра атома входят протоны и электроны

6) атом электронейтрален

7.

Незаряженный электроскоп (1) соединили с заряженным электроскопом (2) пластмассовым стержнем.

В результате эксперимента:

1) первый электроскоп останется незаряженным;

2) оба электроскопа зарядятся отрицательно;

3) второй электроскоп зарядится положительно;

4) оба электроскопа зарядятся отрицательно, у второго электроскопа уменьшится электрический заряд.

8.

Мячик без начальной скорости падает с высоты 28,8 м, абсолютно упругого отскакивает от пола и возвращается обратно. Изобразите на графике зависимость скорости мячика от времени в этом процессе. (Ускорение свободного падения примите равным 10 м/с2.)

9.

Ультрафиолетовое излучение — это один из видов электромагнитного излучения, с диапазоном длин волн 10−380 нм.

 

1) Не оказывает физиологического воздействия на сетчатку человеческого глаза.

2) Излучается Солнцем, сильно нагретыми телами, светящимися парами ртути.

3) Активизирует синтез витамина D в организме, вызывает загар.

4) Это излучение молекул и атомов при тепловых и электрических воздействиях.

5) Используется в медицине, косметологии, оказывает бактерицидное действие.

6) Применяется в приборах ночного видения.

 

Выберите из предложенного списка три правильных утверждения, относящиеся к ультрафиолетовому излучению, и запишите соответствующие цифры.

10.

Длину стороны кубика измерили при помощи линейки. Погрешность измерения длины при помощи данной линейки равна ее цене деления.

Запишите в ответ показания линейки в мм с учётом погрешности измерений через точку с запятой. Например, если показания линейки (25 ± 3) см, то в ответе следует записать «25;3».

11.

Исследовалась зависимость напряжения на обкладках конденсатора от заряда этого конденсатора. Результаты измерений представлены в таблице. Погрешности измерений величин q и U равнялись соответственно 0,5 мкКл и 1 В. Чему примерно равна ёмкость конденсатора? (Ответ дайте в нФ с точностью до 50 нФ.)

 

 q, мкКл 

0

1

2

3

4

5

U, В

 0 

 8 

 22 

 34 

 38 

 52 

12.

Вам необходимо исследовать, как зависит напряжение от силы тока. Имеется следующее оборудование:

 

— электрическая цепь с источником с возможностью регулировать силу тока;

— вольтметр;

— реостат с постоянным сопротивлением.

 

Опишите порядок проведения исследования.

 

В ответе:

1. Зарисуйте или опишите экспериментальную установку.

2. Опишите порядок действий при проведении исследования.

13.

Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе принципа их действия. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца.

 

ТЕХНИЧЕСКИЕ УСТРОЙСТВА   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) термометр для бесконтактного измерения температуры тела

Б) призменный спектроскоп

 

1) излучение нагретым телом инфракрасных лучей

2) рентгеновское излучение

3) отражение световых лучей

4) дисперсия света

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  

14.

Какое физическое явление обуславливает работу фена?


Прочитайте текст и выполните задания 14 и 15.

 

Фен

Фен — электрический прибор, выдающий направленный поток нагретого воздуха. Важнейшей особенностью фена является возможность подачи тепла точно в заданную область. Фен обычно выполняется в виде отрезка трубы, внутри которой располагаются вентилятор и электронагреватель. Часто корпус фена оснащается пистолетной рукояткой.

Вентилятор втягивает воздух через один из срезов трубы, поток воздуха проходит мимо электронагревателя, нагревается и покидает трубу через противоположный срез. На выходной срез трубы фена могут быть установлены различные насадки, изменяющие конфигурацию воздушного потока. Входной срез обычно закрыт решёткой для того, чтобы предотвратить попадание внутрь корпуса фена крупных предметов, например пальцев.

Ряд моделей фенов позволяет регулировать температуру и скорость потока воздуха на выходе. Регулировка температуры достигается либо включением параллельно различного числа нагревателей, либо с помощью регулируемого термостата, либо изменением скорости потока.

Существуют две основные разновидности фенов — фен для сушки и укладки волос и технический фен. Принцип их действия одинаков, различие только в температуре и скорости потока воздуха на выходе прибора.

Технический фен отличается способностью выдавать поток воздуха, нагретого до температуры около 300—500 °C, но с невысокой скоростью. Различные модели технических фенов могут иметь также и режимы с более низкой температурой воздуха, например, 50 °C. Существуют модели, позволяющие получать воздух с температурами в диапазоне 50—650 °C с шагом в 10 °C или плавной регулировкой. Некоторые модели позволяют регулировать расход воздуха.

Строительный фен имеет большое число применений, в т. ч.:

• Сушка;

• Подогрев клеящих составов перед нанесением (в т. ч. и прямо на поверхности, на которую они наносятся);

• Подогрев клеевого слоя перед разделением склеенных деталей (например, удаление наклеек);

• Подогрев некоторых разъёмных металлических соединений перед их разборкой;

• Подогрев термопластовых деталей для придания им формы (например, гибка или посадка труб);

• Разогрев покрытий из лаков и красок для их удаления;

• Пайка и лужение металлов;

• Сварка (прежде всего термопластов);

• Нанесение термопластичных герметиков;

• Посадка термореактивной электроизоляции на проводах;

• Розжиг углей в мангале;

• Отогревание замерзших водопроводных труб;

• Нагревание полиэфирной или эпоксидной смолы для более быстрого отвердения.

15.

Выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.

 

1) Регулировка температуры достигается либо включением параллельно различного числа нагревателей, либо с помощью регулируемого термостата, либо изменением скорости потока.

2) Технический фен не может быть низких температур, всегда больше 100 градусов.

3) Существуют две основные разновидности фенов — фен для сушки и укладки волос и технический фен.

4) Принцип действия бытового фена и технического кардинально различны.


Прочитайте текст и выполните задания 14 и 15.

 

Фен

Фен — электрический прибор, выдающий направленный поток нагретого воздуха. Важнейшей особенностью фена является возможность подачи тепла точно в заданную область. Фен обычно выполняется в виде отрезка трубы, внутри которой располагаются вентилятор и электронагреватель. Часто корпус фена оснащается пистолетной рукояткой.

Вентилятор втягивает воздух через один из срезов трубы, поток воздуха проходит мимо электронагревателя, нагревается и покидает трубу через противоположный срез. На выходной срез трубы фена могут быть установлены различные насадки, изменяющие конфигурацию воздушного потока. Входной срез обычно закрыт решёткой для того, чтобы предотвратить попадание внутрь корпуса фена крупных предметов, например пальцев.

Ряд моделей фенов позволяет регулировать температуру и скорость потока воздуха на выходе. Регулировка температуры достигается либо включением параллельно различного числа нагревателей, либо с помощью регулируемого термостата, либо изменением скорости потока.

Существуют две основные разновидности фенов — фен для сушки и укладки волос и технический фен. Принцип их действия одинаков, различие только в температуре и скорости потока воздуха на выходе прибора.

Технический фен отличается способностью выдавать поток воздуха, нагретого до температуры около 300—500 °C, но с невысокой скоростью. Различные модели технических фенов могут иметь также и режимы с более низкой температурой воздуха, например, 50 °C. Существуют модели, позволяющие получать воздух с температурами в диапазоне 50—650 °C с шагом в 10 °C или плавной регулировкой. Некоторые модели позволяют регулировать расход воздуха.

Строительный фен имеет большое число применений, в т. ч.:

• Сушка;

• Подогрев клеящих составов перед нанесением (в т. ч. и прямо на поверхности, на которую они наносятся);

• Подогрев клеевого слоя перед разделением склеенных деталей (например, удаление наклеек);

• Подогрев некоторых разъёмных металлических соединений перед их разборкой;

• Подогрев термопластовых деталей для придания им формы (например, гибка или посадка труб);

• Разогрев покрытий из лаков и красок для их удаления;

• Пайка и лужение металлов;

• Сварка (прежде всего термопластов);

• Нанесение термопластичных герметиков;

• Посадка термореактивной электроизоляции на проводах;

• Розжиг углей в мангале;

• Отогревание замерзших водопроводных труб;

• Нагревание полиэфирной или эпоксидной смолы для более быстрого отвердения.

16.

К какому типу решетки принадлежат литий и железо?


Прочитайте текст и выполните задания 16—18.

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет кристаллическое строение металлов. К специфическим свойствам рассматриваемых веществ относят следующие:

1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.

2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.

3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

 

Связь между коэффициентами линейного расширения,

температурами плавления металлов и симметрией

кристаллических решеток

Тип решеткиМеталлTпл

*K

коэф.лин.

расширения

Объемноцентрированная кубическаяCs
Rb
K
Na
Li
Feδ
Tiβ
Mo
301
311
335
370
459
1808
2073
2839
2,90
2,98
2,86
2,75
2,80
2,15
1,89
1,50
Гранецентрированная

кубическая

Pb
Al
Ca
Ag
Au
Cu
Niβ
Coβ
Pd
Pt
Pr
600
933
1083
1233
1334
1356
1728
1753
1826
2046
2623
1,71
2,06
2,51
2,32
1,90
2,17
2,36
2,17
2,08
1,81
1,71
Гексагональная Cd
Zn
Mg
Be
Os
594
693
924
1623
2973
1,87
2,10
2,18
2,16
1,87

Кристалл — это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится изображение в виде правильного геометрического тела какой-либо формы. Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Сама элементарная ячейка – это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства. Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность – в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

1. Объемно-центрированная кубическая.

2. Гексагональная плотноупакованная.

3. Гранецентрированная кубическая.


В зависимости от типа кристаллической решетки меняется коэффициент линейного расширения, а также температура плавления металлов. При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение. Коэффициентом линейного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры. Оперируют, обычно средним коэффициентом линейного расширения. Он приведен в четвертом столбце таблицы. Коэффициент линейного расширения относят к характеристикам теплового расширения материала.

17.

Найдите по таблице два металла с объемно-центрированной и гранецентрированной упаковкой с близкими температурами плавления (максимальное отличие 20 градусов). Посчитайте отношение их коэффициентов линейного расширения. Значение запишите с точностью до второго знака после запятой.


Прочитайте текст и выполните задания 16—18.

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет кристаллическое строение металлов. К специфическим свойствам рассматриваемых веществ относят следующие:

1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.

2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.

3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

 

Связь между коэффициентами линейного расширения,

температурами плавления металлов и симметрией

кристаллических решеток

Тип решеткиМеталлTпл

*K

коэф.лин.

расширения

Объемноцентрированная кубическаяCs
Rb
K
Na
Li
Feδ
Tiβ
Mo
301
311
335
370
459
1808
2073
2839
2,90
2,98
2,86
2,75
2,80
2,15
1,89
1,50
Гранецентрированная

кубическая

Pb
Al
Ca
Ag
Au
Cu
Niβ
Coβ
Pd
Pt
Pr
600
933
1083
1233
1334
1356
1728
1753
1826
2046
2623
1,71
2,06
2,51
2,32
1,90
2,17
2,36
2,17
2,08
1,81
1,71
Гексагональная Cd
Zn
Mg
Be
Os
594
693
924
1623
2973
1,87
2,10
2,18
2,16
1,87

Кристалл — это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится изображение в виде правильного геометрического тела какой-либо формы. Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Сама элементарная ячейка – это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства. Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность – в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

1. Объемно-центрированная кубическая.

2. Гексагональная плотноупакованная.

3. Гранецентрированная кубическая.


В зависимости от типа кристаллической решетки меняется коэффициент линейного расширения, а также температура плавления металлов. При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение. Коэффициентом линейного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры. Оперируют, обычно средним коэффициентом линейного расширения. Он приведен в четвертом столбце таблицы. Коэффициент линейного расширения относят к характеристикам теплового расширения материала.

18.

В каком из типов упаковки самое маленькое количество частиц? Какое количество в этой упаковке?


Прочитайте текст и выполните задания 16—18.

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет кристаллическое строение металлов. К специфическим свойствам рассматриваемых веществ относят следующие:

1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.

2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.

3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

 

Связь между коэффициентами линейного расширения,

температурами плавления металлов и симметрией

кристаллических решеток

Тип решеткиМеталлTпл

*K

коэф.лин.

расширения

Объемноцентрированная кубическаяCs
Rb
K
Na
Li
Feδ
Tiβ
Mo
301
311
335
370
459
1808
2073
2839
2,90
2,98
2,86
2,75
2,80
2,15
1,89
1,50
Гранецентрированная

кубическая

Pb
Al
Ca
Ag
Au
Cu
Niβ
Coβ
Pd
Pt
Pr
600
933
1083
1233
1334
1356
1728
1753
1826
2046
2623
1,71
2,06
2,51
2,32
1,90
2,17
2,36
2,17
2,08
1,81
1,71
Гексагональная Cd
Zn
Mg
Be
Os
594
693
924
1623
2973
1,87
2,10
2,18
2,16
1,87

Кристалл — это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится изображение в виде правильного геометрического тела какой-либо формы. Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Сама элементарная ячейка – это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства. Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность – в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

1. Объемно-центрированная кубическая.

2. Гексагональная плотноупакованная.

3. Гранецентрированная кубическая.


В зависимости от типа кристаллической решетки меняется коэффициент линейного расширения, а также температура плавления металлов. При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение. Коэффициентом линейного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры. Оперируют, обычно средним коэффициентом линейного расширения. Он приведен в четвертом столбце таблицы. Коэффициент линейного расширения относят к характеристикам теплового расширения материала.