№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора ФИПИ
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 93097

1.

Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:

 

генри, кипение, интерференция, кулон, литр, инерция.

 

Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.



Название группы понятийПеречень понятий
  
  

2.

Выберите два верных утверждения о физических явлениях, величинах и закономерностях.

Запишите в ответ их номера.

 

1) В инерциальной системе отсчёта импульс системы тел сохраняется, если сумма внешних сил равна нулю.

2) Процесс конденсации жидкостей происходит с поглощением большого количества теплоты.

3) В процессе электризации трением два первоначально незаряженных тела приобретают разноимённые и различные по модулю заряды.

4) В цепи постоянного тока во всех параллельно соединённых резисторах протекает одинаковый электрический ток.

5) В процессе альфа-распада происходит испускание радиоактивным веществом ядер атомов гелия.

3.

В истории известны случаи обрушения мостов, когда по ним проходил строй солдат, марширующих «в ногу». Дело в том, что в этих случаях частота шагов солдат совпадала с собственной частотой свободных колебаний моста, и он начинал колебаться с очень большой амплитудой. Какое явление наблюдалось в этих случаях?

4.

Прочитайте текст и вставьте на место пропусков слова (словосочетания) из приведённого списка.

Для того чтобы воспроизвести опыт Эрстеда, к источнику тока через реостат подключим прямой проводник, возле которого расположена магнитная стрелка (см. рисунок). При замыкании электрической цепи __________________________________________________. При этом магнитная стрелка всегда ______________________________________________. Отклонение стрелки доказывает, что вокруг проводника с электрическим током существует ____________________________________.

 

Список слов и словосочетаний

1) по проводнику протекает электрический ток

2) в проводнике накапливается электрический заряд

3) ориентируется параллельно проводнику

4) ориентируется перпендикулярно проводнику

5) поворачивается на 180°

6) электростатическое поле

7) магнитное поле

5.

Из герметично закрытого сосуда выкачивают воздух. Выберите все утверждения, которые верно характеризуют процесс, происходящий с воздухом в сосуде, и запишите номера выбранных утверждений.

 

1) Объем воздуха в сосуде не меняется.

2) Объем воздуха в сосуде увеличивается.

3) Температура воздуха в сосуде увеличивается.

4) Температура воздуха в сосуде остаётся неизменной.

5) Давление воздуха в сосуде уменьшается.

6) Давление воздуха в сосуде остается неизменным.

6.

На рисунке изображён фрагмент Периодической системы химических элементов Д.И. Менделеева. Изотоп циркония испытывает β+-распад, при котором образуются позитрон e+, нейтрино и ядро другого элемента. Определите, какой элемент образуется при β+-распаде изотопа циркония.

7.

На рисунке приведены спектр поглощения разреженных атомарных паров неизвестного вещества и спектры поглощения атомарных паров известных элементов. Проанализировав спектры, можно утверждать, что неизвестное вещество содержит

1) только водород (Н) и гелий (Не)

2) водород (Н), гелий (Не) и натрий (Na)

3) только натрий (Na) и водород (Н)

4) натрий (Na), водород (Н) и другие элементы, но не гелий (Не)

8.

С помощью монохроматора дифракционную решетку с периодом 1,8 мкм освещают нормально пучком света. Длину волны варьируют от 400 до 800 нм. Изобразите график зависимости максимального количества интерференционных максимумов дифракционной решётки в зависимости от длины волны света.

9.

В мастерской Ивана Петровича электрическая линия для розеток оснащена автоматическим выключателем, который размыкает линию, если сила тока в ней превышает 16 А. Напряжение электрической сети 220 В.

В таблице представлены электрические приборы, используемые в мастерской, и потребляемая ими мощность.

 

Электрические приборы
Потребляемая мощность, Вт
Электрический рубанок
800
Электрическая ударная дрель
1400
Электрический лобзик
600
Шлифовальная машина
1900
Циркулярная пила
1600
Торцовочная пила
2200

 

В мастерской работает торцовочная пила. Какой(-ие) из указанных выше приборов можно включить в сеть дополнительно к торцовочной пиле? Запишите решение и ответ (порядковый номер(-а) прибора(-ов)).

10.

Температуру измерили при помощи термометра. Погрешность измерения температуры при помощи данного термометра равна его цене деления.

 

Запишите в ответ показания термометра в °С с учётом погрешности измерений через точку с запятой. Например, если показания термометра (25 ± 3)  °С, то в ответе следует записать «25;3».

11.

Космонавты исследовали зависимость силы тяжести от массы тела на посещённой ими планете. Погрешность измерения силы тяжести равна 2,5 Н, а массы тела – 50 г. Результаты измерений с учётом их погрешности представлены на рисунке.

Согласно этим измерениям, ускорение свободного падения на планете приблизительно равно

1) 10 м/с2

2) 7,5 м/с2

3) 5 м/с2

4) 2,5 м/с2

 

Условие уточнено редакцией РЕШУ ВПР.

12.

Вам необходимо исследовать, меняется ли период колебаний нитяного маятника при изменении массы груза. Имеется следующее оборудование (см. рисунок):

− секундомер электронный;

− набор из трёх шариков (с крючком) одинакового объёма, но разной массы: 30 г, 50 г и 75 г;

− набор нитей для маятника: 50 см, 100 см и 150 см;

− штатив с муфтой и лапкой.

 

В ответе:

1. Опишите экспериментальную установку.

2. Опишите порядок действий при проведении исследования.

13.

Установите соответствие между примерами и физическими явлениями, которые эти примеры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) Стерилизация медицинских инструментов в автоклаве под давлением выше атмосферного

Б) Ощущение холода после купания, душа

 

1) Кипение жидкости при пониженном давлении

2) Охлаждение под действием ветра

3) Парообразование с поверхности тела, происходящее с поглощением энергии

4) Парообразование при повышенном давлении и высоких температурах.

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  

14.

Прочитайте фрагмент инструкции к посудомоечной машине и выполните задания 14 и 15.

 

В инструкции указана максимальная высота, на которой может быть закреплен сливной шланг. Почему сливной шланг нельзя размещать на высоте, большей 750 мм?

15.

Прочитайте фрагмент инструкции к посудомоечной машине и выполните задания 14 и 15.

Почему в инструкции запрещается использовать переходники и адаптеры для подключения машины к электрической сети?

16.

Какой из типов рентгеновского излучения имеет линейчатый спектр?


Рентгеновские лучи

Рентгеновское излучение − это электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением.

Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода (например, в газоразрядной трубке низкого давления). Часть энергии, не рассеивающаяся в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи).

Есть два типа рентгеновского излучения: тормозное и характеристическое. Тормозное рентгеновское излучение не является монохроматическим, оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, выбивает электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий.

Монохроматическое рентгеновское излучение, длины волн которого сопоставимы с размерами атомов, широко используется для исследования структуры веществ. В основе данного метода лежит явление дифракции рентгеновских лучей на трёхмерной кристаллической решётке. Дифракция рентгеновских лучей на монокристаллах была открыта в 1912 г. М. Лауэ. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, он наблюдал на помещённой за кристаллом пластинке дифракционную картину, которая состояла из большого количества расположенных в определённом порядке пятен.

Дифракционная картина, получаемая от поликристаллического материала (например, металлов), представляет собой набор чётко обозначенных колец. От аморфных материалов (или жидкостей) получают дифракционную картину с размытыми кольцами.

17.

На рисунках представлены дифракционные картины, полученные на монокристалле, металлической фольге и воде. Какая из картин соответствует дифракции на монокристалле?


Рентгеновские лучи

Рентгеновское излучение − это электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением.

Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода (например, в газоразрядной трубке низкого давления). Часть энергии, не рассеивающаяся в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи).

Есть два типа рентгеновского излучения: тормозное и характеристическое. Тормозное рентгеновское излучение не является монохроматическим, оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, выбивает электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий.

Монохроматическое рентгеновское излучение, длины волн которого сопоставимы с размерами атомов, широко используется для исследования структуры веществ. В основе данного метода лежит явление дифракции рентгеновских лучей на трёхмерной кристаллической решётке. Дифракция рентгеновских лучей на монокристаллах была открыта в 1912 г. М. Лауэ. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, он наблюдал на помещённой за кристаллом пластинке дифракционную картину, которая состояла из большого количества расположенных в определённом порядке пятен.

Дифракционная картина, получаемая от поликристаллического материала (например, металлов), представляет собой набор чётко обозначенных колец. От аморфных материалов (или жидкостей) получают дифракционную картину с размытыми кольцами.

18.

Можно ли исследовать атомную структуру монокристалла, используя инфракрасные лучи? Ответ поясните.


Рентгеновские лучи

Рентгеновское излучение − это электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением.

Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода (например, в газоразрядной трубке низкого давления). Часть энергии, не рассеивающаяся в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи).

Есть два типа рентгеновского излучения: тормозное и характеристическое. Тормозное рентгеновское излучение не является монохроматическим, оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, выбивает электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий.

Монохроматическое рентгеновское излучение, длины волн которого сопоставимы с размерами атомов, широко используется для исследования структуры веществ. В основе данного метода лежит явление дифракции рентгеновских лучей на трёхмерной кристаллической решётке. Дифракция рентгеновских лучей на монокристаллах была открыта в 1912 г. М. Лауэ. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, он наблюдал на помещённой за кристаллом пластинке дифракционную картину, которая состояла из большого количества расположенных в определённом порядке пятен.

Дифракционная картина, получаемая от поликристаллического материала (например, металлов), представляет собой набор чётко обозначенных колец. От аморфных материалов (или жидкостей) получают дифракционную картину с размытыми кольцами.