Рентгеновское излучение
Рентгеновские лучи (первоначально названные Х-лучами) были открыты в 1895 г. немецким физиком Рентгеном. Открыв Х-лучи, Рентген тщательными опытами выяснил условия их образования. Он установил, что эти лучи возникают при торможении на веществе быстро летящих электронов. Исходя из этого обстоятельства, Рентген сконструировал и построил специальную трубку, удобную для получения рентгеновских лучей (см. рис. 1).
Рентгеновские трубки представляют собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая — до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь электрическим полем, «бомбардируют» анод. В результате взаимодействия быстрых электронов с атомами анода рождаются фотоны рентгеновского диапазона.
Было установлено, что чем меньше длина волны рентгеновского излучения, тем больше проникающая способность лучей. Рентген назвал лучи с высокой проникающей способностью (слабо поглощающиеся веществом) жёсткими.
Различают тормозное и характеристическое рентгеновское излучение. Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в виде рентгеновских фотонов. Такое излучение называется тормозным. Тормозное излучение содержит фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Энергия излучаемого фотона не может превышать кинетическую энергию порождающего его электрона. Кинетическая же энергия электронов зависит от приложенной к электродам разности потенциалов.
Механизм получения характеристического излучения следующий. Быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Занимая более низкий уровень, электрон излучает излишек энергии в форме кванта характеристического рентгеновского излучения. Наиболее быстрые электроны могут выбить электрон с K-оболочки, менее быстрые — с L-оболочки и т. д. (рис. 2а).
Электронная структура атома — это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определённые значения энергии, соответствующие разности уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода — отсюда и название этих лучей. На рис. 2б показан характеристический спектр на фоне тормозного спектра.
На рис. 2б в тексте представлен спектр рентгеновского излучения. Изменится ли и если изменится, то как значение длины волны λmin при увеличении напряжения на рентгеновской трубке? Ответ поясните.
Значение λmin уменьшится. При увеличении напряжения на трубке увеличивается кинетическая энергия электронов, вылетающих при нагревании катода. Следовательно, увеличится возможная энергия выбиваемых на аноде рентгеновских квантов, а энергия фотона обратно пропорциональна длине волны.

